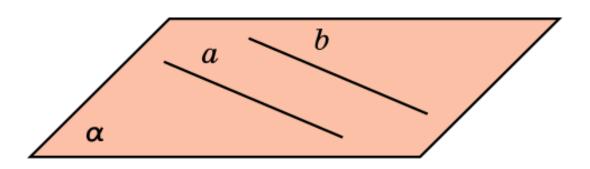
Параллельность прямых



Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

Сколько плоскостей можно провести через две параллельные прямые?

Ответ: Одну.

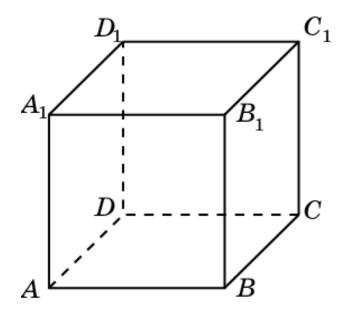
Известно, что в плоскости прямая, пересекающая одну из параллельных прямых, пересекает и вторую прямую. Будет ли это утверждение верно для пространства?

Ответ: Нет.

Найдите геометрическое место (ГМ) прямых, пересекающих две данные параллельные прямые.

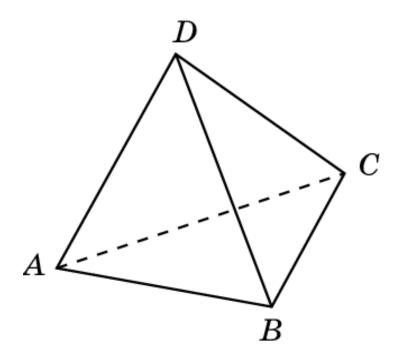
Ответ: Плоскость.

Являются ли параллельными прямые AB и CC_1 , проходящие через вершины куба $A...D_1$?



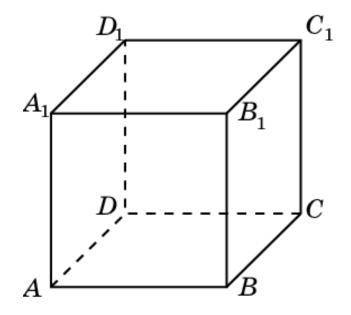
Ответ: Нет.

Являются ли параллельными прямые AB и CD, проходящие через вершины тетраэдра ABCD?



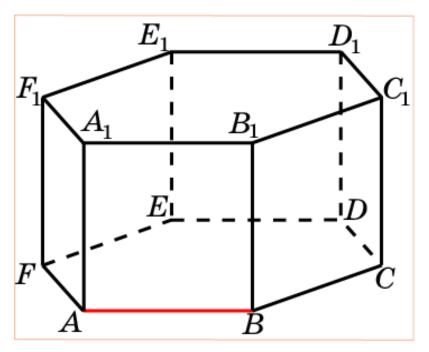
Ответ: Нет.

Дан куб $A...D_1$. Назовите прямые, проходящие через вершины этого куба и параллельные прямой AB.



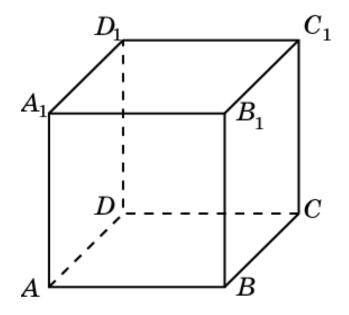
Ответ: A_1B_1 ; CD; C_1D_1 .

Назовите прямые, проходящие через вершины правильной шестиугольной призмы, параллельные прямой AB.



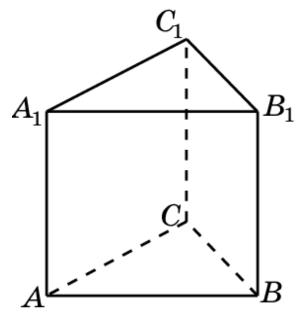
Otbet: A_1B_1 ; DE; D_1E_1 ; CF; C_1F_1 .

Сколько имеется пар параллельных прямых, содержащих ребра куба $A...D_1$.



Решение: Каждое ребро участвует в трех парах параллельных прямых. У куба имеется 12 ребер. Следовательно, искомое число пар параллельных прямых равно $\frac{12 \cdot 3}{2} = 18$.

Сколько имеется пар параллельных прямых, содержащих ребра правильной треугольной призмы.



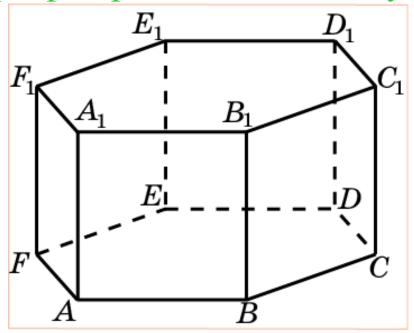
Решение: Каждое ребро оснований участвует в одной паре параллельных прямых. Каждое боковое ребро участвует в двух парах параллельных прямых. Следовательно, искомое число

пар параллельных прямых равно $\frac{6}{2} + \frac{3 \cdot 2}{2} = 6$.

Other:
$$\frac{6}{2} + \frac{3 \cdot 2}{2} = 6.$$

$$\frac{6}{2} + \frac{3 \cdot 2}{2} = 6$$

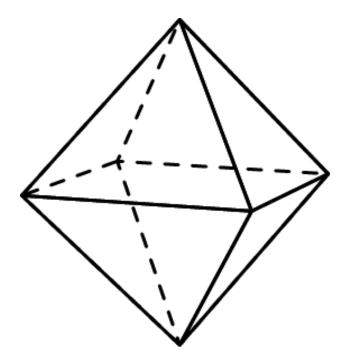
Сколько имеется пар параллельных прямых, содержащих ребра правильной шестиугольной призмы.



Решение: Каждое ребро оснований участвует в трех парах параллельных прямых. Каждое боковое ребро участвует в пяти парах параллельных прямых. Следовательно, искомое число пар параллельных прямых равно $\frac{12 \cdot 3}{2} + \frac{6 \cdot 5}{2} = 33$.

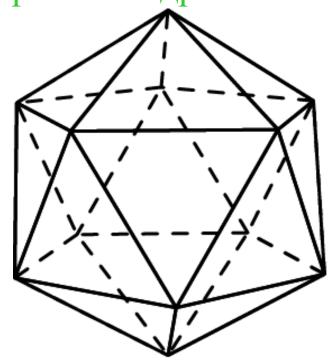
Other: $\frac{12 \cdot 3}{2} + \frac{6 \cdot 5}{2} = 33$.

Сколько имеется пар параллельных прямых, содержащих ребра октаэдра.



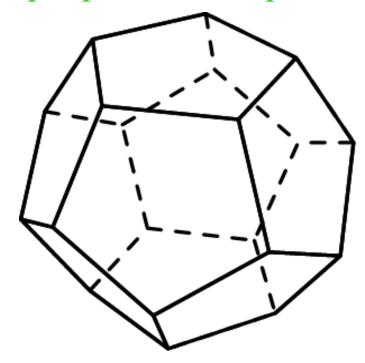
Решение: Для каждого ребра имеется только одно ребро, ему параллельное. У октаэдра 12 ребер. Следовательно, искомое число пар параллельных прямых равно $\frac{12}{2} = 6$.

Сколько имеется пар параллельных прямых, содержащих ребра икосаэдра.



Решение: Для каждого ребра имеется только одно ребро, ему параллельное. У икосаэдра 30 ребер. Следовательно, искомое число пар параллельных прямых равно $\frac{30}{2} = 15$.

Сколько имеется пар параллельных прямых, содержащих ребра додекаэдра.



Решение: Для каждого ребра имеется только одно ребро, ему параллельное. У додекаэдра 30 ребер. Следовательно, искомое число пар параллельных прямых равно $\frac{30}{2} = 15$.

В пространстве даны *п* параллельных между собой прямых. Сколько плоскостей можно провести через различные пары этих прямых, если известно, что никакие три из них не лежат в одной плоскости?

OTBET:
$$\frac{n(n-1)}{2}$$
.