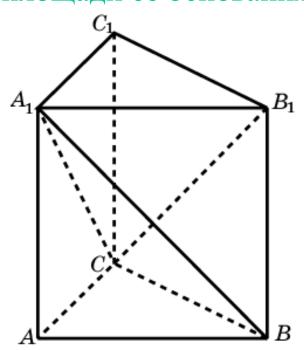
ОБЪЕМ ПИРАМИДЫ

Теорема. Объем пирамиды равен одной третьей произведения площади ее основания на высоту.



Доказательство. Рассмотрим случай треугольной пирамиды. Пусть A_1ABC треугольная пирамида. Достроим ее до призмы $ABCA_1B_1C_1$. Плоскости, проходящие через точки B, C, A_1 и C, B_1 , A_1 разбивают эту призму на три пирамиды A_1ABC , A_1CBB_1 и $A_1CB_1C_1$ с вершинами в точке A_1 . Пирамиды A_1CBB_1 и $A_1CB_1C_1$ имеют равные основания CBB_1 и CB_1C_1 . Кроме этого, данные пирамиды имеют общую вершину, а их основания лежат в одной плоскости. Значит, эти пирамиды имеют общую высоту. Следовательно, эти пирамиды имеют равные объемы.

Рассмотрим теперь пирамиды A_1ABC и $CA_1B_1C_1$. Они имеют равные основания ABC и $A_1B_1C_1$ и равные высоты. Следовательно, они имеют равные объемы. Таким образом, объемы всех трех пирамид равны. Учитывая, что объем призмы равен произведению площади основания на высоту, получим формулу объема треугольной пирамиды $V = \frac{1}{2} S \cdot h,$

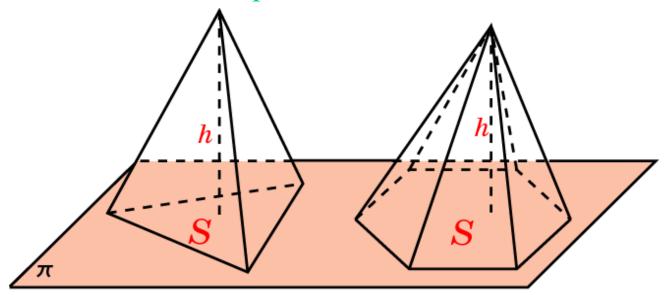
где S - площадь основания пирамиды, h - ее высота.

ОБЪЕМ ПИРАМИДЫ

Пусть теперь дана пирамида, в основании которой - многоугольник. Рассмотрим треугольную пирамиду с такой же высотой и такой же площадью основания. По теореме предыдущего параграфа объемы этих пирамид равны и, следовательно, имеет место формула

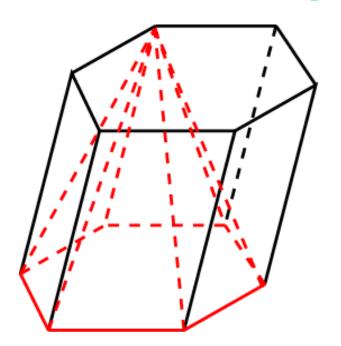
$$V = \frac{1}{3}S \cdot h,$$

где S - площадь основания пирамиды, h - ее высота.



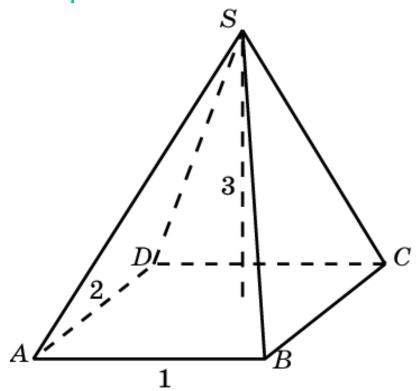
$$V = \frac{1}{3} S \cdot h$$

Вершинами пирамиды являются все вершины одного основания и одна вершина другого основания призмы. Какую часть объема призмы составляет объем пирамиды?



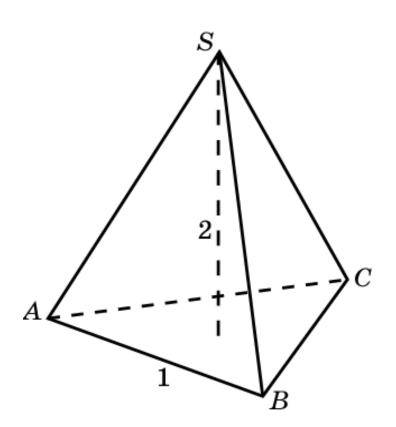
Ответ: Одна треть.

Найдите объем пирамиды, высота которой 3, а в основании - прямоугольник со сторонами 1 и 2.



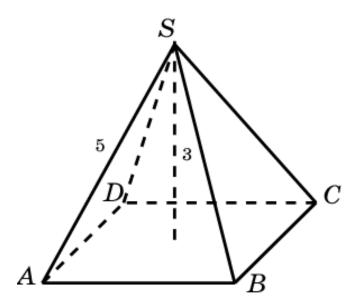
Ответ: 2.

Найдите объем правильной треугольной пирамиды, сторона основания которой равна 1, высота -2.



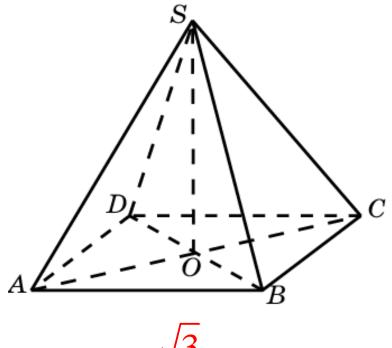
OTBET: $\frac{\sqrt{3}}{6}$.

В правильной четырехугольной пирамиде высота 3 м, боковое ребро 5 м. Найдите ее объем.



Ответ: 32 м³.

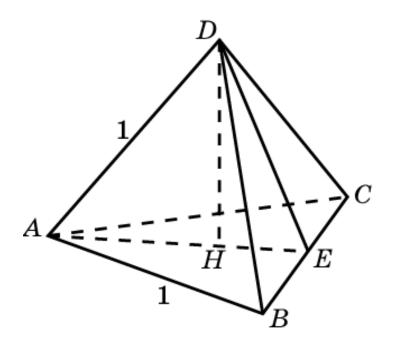
Найдите объем правильной четырехугольной пирамиды, если ее диагональным сечением является правильный треугольник со стороной, равной 1.



Ответ: $\frac{\sqrt{3}}{12}$.

Решение. Пусть ACS — правильный треугольник. Его высота SO равна $\frac{\sqrt{3}}{2}$. Сторона основания равна $\frac{\sqrt{2}}{2}$. Следовательно, объем пирамиды равен $\frac{\sqrt{3}}{2}$.

Найдите объем тетраэдра с ребром, равным 1.



Otbet:
$$\frac{\sqrt{2}}{12}$$
.

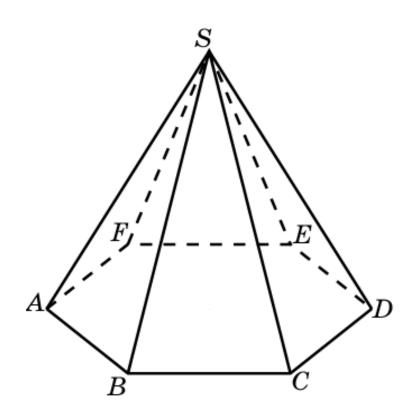
Решение. Пусть E — середина ребра BC. В треугольнике ADE

$$AE = DE = \frac{\sqrt{3}}{2}$$
. Высота DH равна $\frac{\sqrt{6}}{3}$.

Площадь треугольника ABC равна $\frac{\sqrt{3}}{4}$.

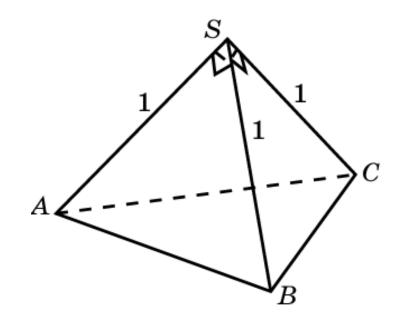
Следовательно, объем тетраэдра равен $\frac{\sqrt{2}}{12}$.

Объем правильной шестиугольной пирамиды 6 см³. Сторона основания 1 см. Найдите боковое ребро.



Ответ: 7 см.

Боковые ребра треугольной пирамиды взаимно перпендикулярны, каждое из них равно 1. Найдите объем пирамиды.

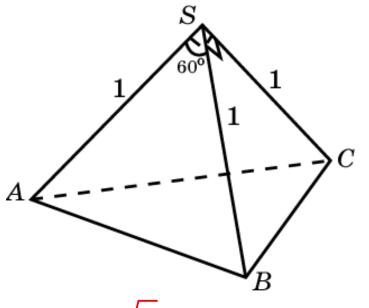


Решение. Примем треугольник ABS за основание пирамиды.

Тогда SC будет высотой. Объем пирамиды равен $\frac{1}{6}$

Other: $\frac{1}{6}$.

Найдите объем треугольной пирамиды, если длина каждого ее бокового ребра равна 1, а плоские углы при вершине равны 60°, 90° и 90°.



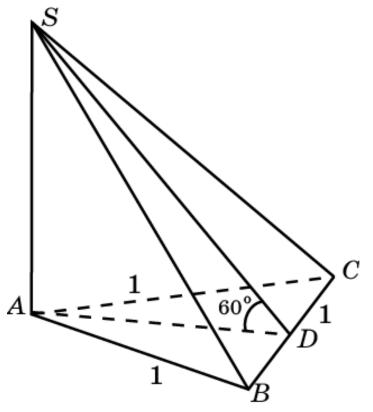
Otbet: $\frac{\sqrt{3}}{12}$.

Решение. Примем треугольник ABS за основание пирамиды.

Тогда SC будет высотой.

Объем пирамиды равен $\frac{\sqrt{3}}{12}$.

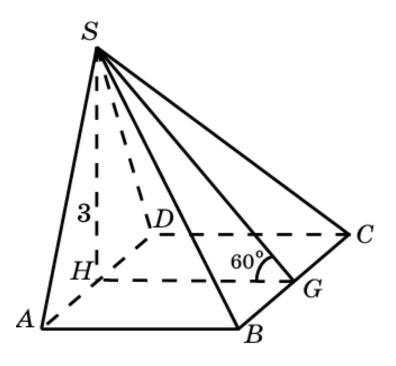
Основанием пирамиды является равносторонний треугольник со стороной, равной 1. Две ее боковые грани перпендикулярны плоскости основания, а третья образует с основанием угол 60°. Найдите объем пирамиды.



Решение. Площадь треугольника ABC равна $\frac{3}{2}$. Высота SA равна $\frac{3}{2}$. Следовательно, объем пирамиды равен $\frac{\sqrt{3}}{8}$.

Otbet:
$$\frac{\sqrt{3}}{8}$$
.

Основанием пирамиды служит прямоугольник, одна боковая грань перпендикулярна плоскости основания, а три другие боковые грани наклонены к плоскости основания под углом 60°. Высота пирамиды равна 3 см. Найдите объем пирамиды.



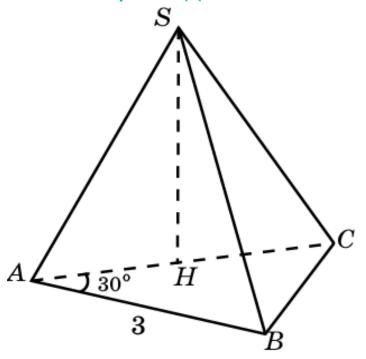
Решение. Треугольник *SAD* равносторонний со стороной $2\sqrt{3}$.

$$AB = GH = \sqrt{3}$$
.

Площадь прямоугольника *АВСD* равна 6. Следовательно, объем пирамиды равен 6.

Ответ: 6.

В основании пирамиды лежит прямоугольный треугольник, один из катетов которого равен 3 см, а прилежащий к нему острый угол равен 30°. Все боковые ребра пирамиды наклонены к плоскости основания под углом 60°. Найдите объем пирамиды.

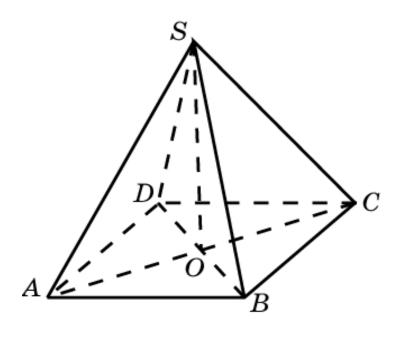


Otbet: $\frac{3\sqrt{3}}{2}$.

Решение. Площадь треугольника ABC равна $\frac{3\sqrt{3}}{2}$.

Основанием высоты SH служит середина AC. Треугольник SAC равносторонний со стороной, равной $2\sqrt{3}$. Его высота равна 3. Следовательно, объем пирамиды равен $\frac{3\sqrt{3}}{2}$.

Боковые грани пирамиды, в основании которой лежит ромб, наклонены к плоскости основания под углом 30°. Диагонали ромба равны 10 см и 24 см. Найдите объем пирамиды.



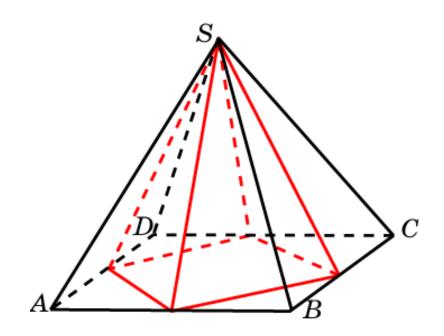
Ответ: $\frac{800\sqrt{3}}{13}$ см³.

Решение. Площадь основания пирамиды равна 120 см². Сторона основания равна 13 см.

Высота ромба равна $\frac{120}{13}$ см. Высота пирамиды равна $\frac{20\sqrt{3}}{13}$ см. Следовательно, объем пирамиды

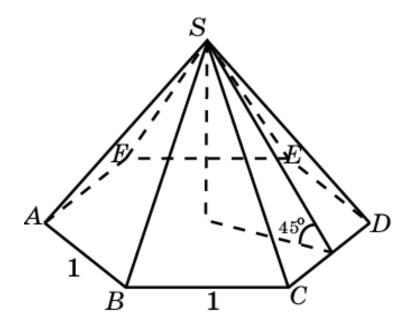
равен
$$\frac{800\sqrt{3}}{13}$$
 см³.

Пирамида, объем которой равен 1, а в основании лежит прямоугольник, пересечена четырьмя плоскостями, каждая из которых проходит через вершину пирамиды и середины смежных сторон основания. Определите объем оставшейся части пирамиды.



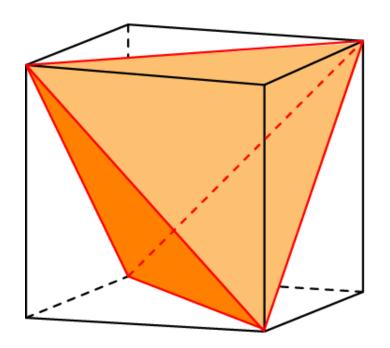
Otbet: $\frac{1}{2}$.

Сторона основания правильной шестиугольной пирамиды 1, а угол между боковой гранью и основанием 45°. Найдите объем пирамиды.



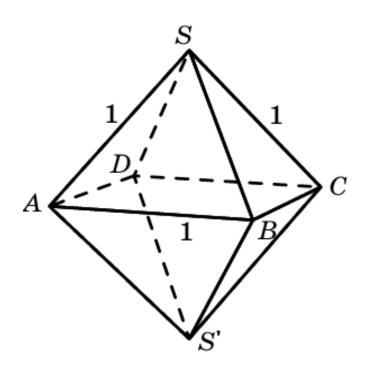
Otbet: $\frac{3}{4}$

В куб с ребром, равным 1, вписан правильный тетраэдр таким образом, что его вершины совпадают с четырьмя вершинами куба. Определите объем тетраэдра.



Other: $\frac{1}{3}$.

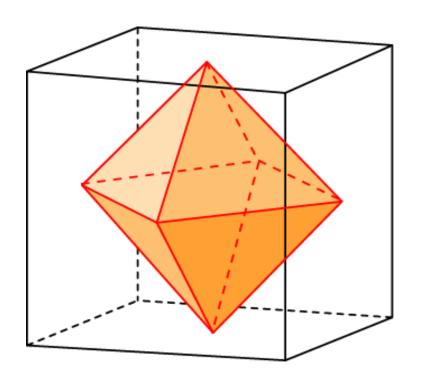
Найдите объем октаэдра с ребром, равным 1.



Решение. Октаэдр состоит из двух правильных четырехугольных пирамид со стороной основания 1 и высотой $\frac{\sqrt{2}}{2}$. Следовательно, объем октаэдра равен $\frac{\sqrt{2}}{3}$.

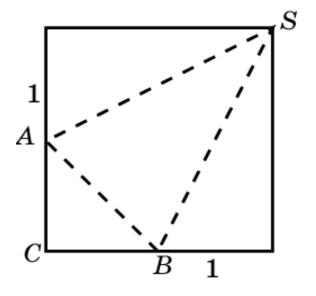
OTBET:
$$\frac{\sqrt{2}}{3}$$
.

Центры граней куба, ребро которого равно 1, служат вершинами октаэдра. Определите его объем.



Otbet:
$$\frac{1}{6}$$
.

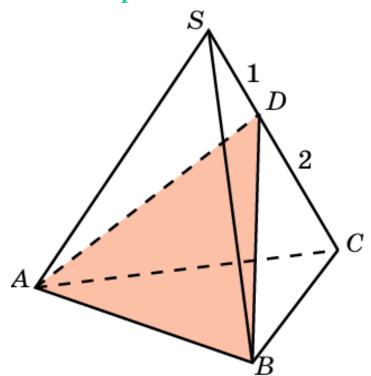
Развертка треугольной пирамиды представляет собой квадрат со стороной 1. Найдите объем этой пирамиды.



Решение. Основанием пирамиды будет прямоугольный треугольник ABC с катетами, равными 0,5. Высота пирамиды будет равна стороне квадрата. Следовательно, объем пирамиды равен $\frac{1}{24}$.

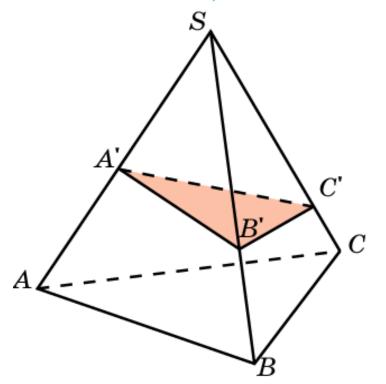
Ответ:
$$\frac{1}{24}$$
.

Плоскость проходит через сторону основания треугольной пирамиды и делит противоположное боковое ребро в отношении 1 : 2, считая от вершины. В каком отношении эта плоскость делит объем пирамиды?



Ответ: 1:2.

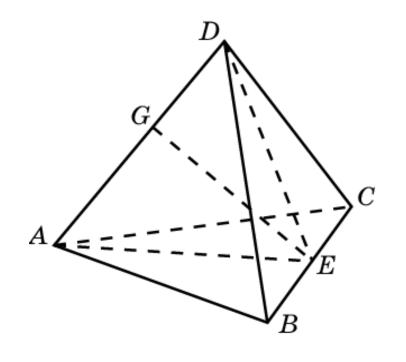
Плоскость пересекает ребра SA, SB, SC треугольной пирамиды SABC в точках A', B', C' соответственно. Найдите объем пирамиды SA'B'C', если объем исходной пирамиды равен 1 и SA': SA = 1: 2, SB': SB = 2: 3, SC': SC = 3: 4.



Решение. Площадь треугольника SA'B' составляет 1/3 площади треугольника SAB. Высота, опущенная из точки C' составляет 3/4 высоты, опущенной из вершины C. Следовательно, объем пирамиды SA'B'C' равен 1/4.

Ответ: 1/4.

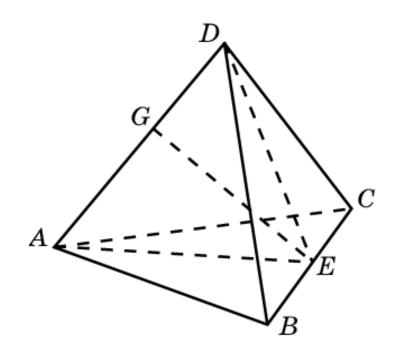
Два противоположных ребра тетраэдра перпендикулярны и равны 3. Расстояние между ними равно 2. Найдите объем тетраэдра.



Решение. Пусть *AB* перпендикулярно *CD*. Проведем сечение *ADE* перпендикулярное *BC*. Площадь треугольника *ADE* равна 3. Объем пирамиды равен 3.

Ответ: 3.

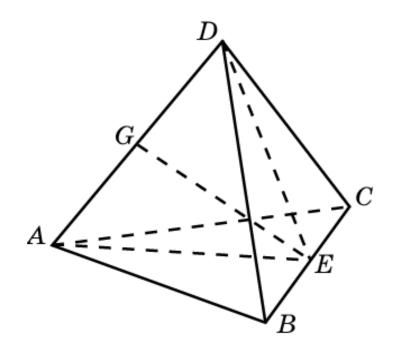
Два противоположных ребра тетраэдра образуют угол 60° и равны 2. Расстояние между ними равно 3. Найдите объем тетраэдра.



Решение. Пусть угол между AD и BC равен 60° . Проведем общий перпендикуляр EG. Площадь треугольника ADE равна 3. Угол между прямой BC и плоскостью ADE равен 60° . Объем пирамиды равен $\sqrt{3}$

Otbet: $\sqrt{3}$.

Одно ребро тетраэдра равно 6. Все остальные ребра равны 4. Найдите объем тетраэдра.

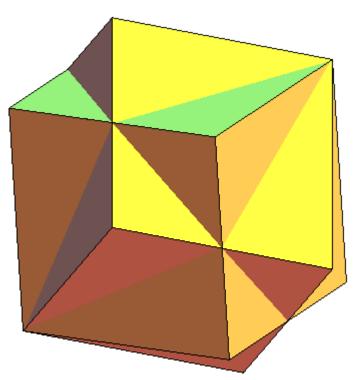


Ответ: $4\sqrt{3}$.

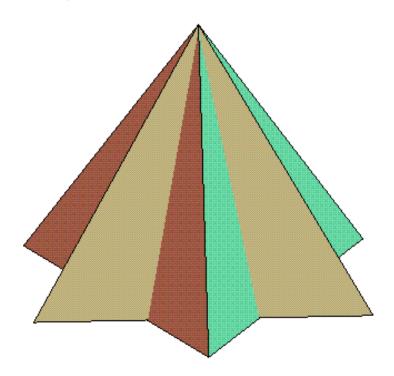
Решение. Пусть BC = 6. Обозначим E середину BC. $AE = DE = \sqrt{7}$. Высота EG треугольника ADE равна $\sqrt{3}$. Его площадь равна $2\sqrt{3}$. Объем пирамиды равен $4\sqrt{3}$.

Два куба с ребром a имеют общую диагональ, но один повернут вокруг этой диагонали на угол 60° по отношению к другому. Найдите объем их общей части.

Ответ: Общая часть является правильной 6-й бипирамидой со стороной основания $\frac{a\sqrt{2}}{2}$ и Высотой $\frac{a\sqrt{3}}{2}$. Объем этой бипирамиды равен $\frac{3a^3}{4}$.

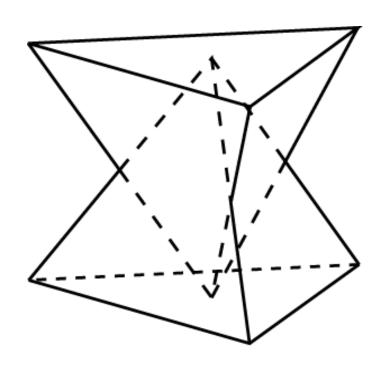


Два правильных тетраэдра с ребрами *а* имеют общую высоту. Один из них повернут на 60° по отношению к другому. Найдите объем их общей части.



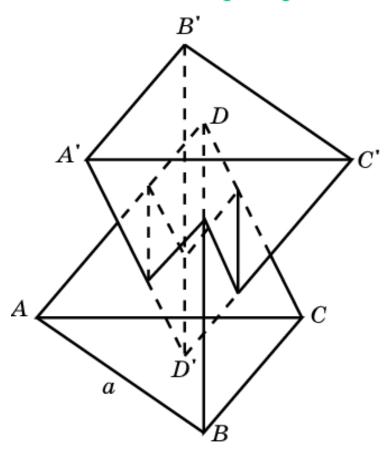
Ответ:
$$\frac{a^3\sqrt{2}}{18}$$
.

Два правильных тетраэдра с ребрами *а* имеют общую высоту. Вершина одного из них лежит в центре основания другого и наоборот. Стороны оснований тетраэдров попарно параллельны. Найдите объем общей части этих тетраэдров.



Ответ:
$$\frac{a^3\sqrt{2}}{48}$$
.

Два правильных тетраэдра с ребрами *а* имеют общую высоту. Вершина одного из них лежит в центре основания другого и наоборот. Основание одного из тетраэдров повернуто на 60° по отношению к основанию другого. Найдите объем общей части этих тетраэдров.

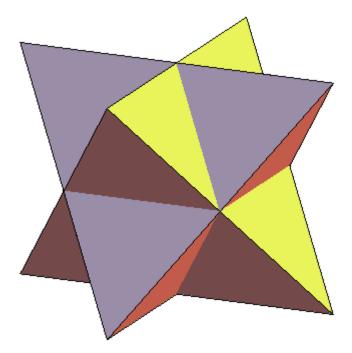


Решение: Общей частью является параллелепипед, все грани которого – ромбы с острым углом 60° . Ребра параллелепипеда равны $\frac{a}{3}$. Его объем равен $\frac{a^3\sqrt{2}}{2}$

Ответ:
$$\frac{a^3\sqrt{2}}{54}$$
.

Два правильных тетраэдра с ребрами *а* имеют общий отрезок, соединяющий середины двух противоположных ребер. Один тетраэдр повернут на 90° по отношению к другому. Найдите объем их общей части.

Ответ: Общей частью является октаэдр (правильная 4-я бипирамида) с ребром $\frac{a}{2}$. Его объем равен $\frac{a^3\sqrt{2}}{24}$.



Октаэдр с ребром 1 повернут вокруг прямой, соединяющей противоположные вершины, на угол 45°. Найдите объем общей части исходного октаэдра и повернутого?

Ответ: Общей частью является правильная 8-я бипирамида с площадью основания $2\sqrt{2}-2$ и высотой $\frac{\sqrt{2}}{2}$. Ее объем равен $4-2\sqrt{2}$

